《列王的纷争》绿色度测评报告
- paddle.fft. irfft2 ( x: Tensor, s: list[int] | tuple[int, int] | None = None, axes: list[int] | tuple[int, int] = (-2, -1), norm: _NormalizeMode = 'backward', name: str | None = None ) Tensor [source]
-
百度 根据市委市府有关要求,公司目前下设的上海民间收藏中心,建设并运营民间藏品融通平台(东方藏品网),通过交易网站、杂志月刊、众筹平台、艺廊门店、沙龙俱乐部等途径,为民间藏品提供展示、交流、交易、理财的全产业链平台服务,并拥有朝鲜艺术(朝画夕识)、海派书画等艺术品领域品牌项目。
Computes the inverse of rfft2.
- Parameters
-
x (Tensor) – The input data. It’s a Tensor type.
s (sequence[int]|None, optional) – Shape (length of each transformed axis) of the output. It should be a sequence of 2 integers. This corresponds to
n
forirfft(x, n)
. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used. Default is None.axes (sequence[int], optional) – Axes over which to compute the inverse FFT. It should be a sequence of 2 integers. If not specified, the last two axes are used by default.
norm (str, optional) –
Indicates which direction to scale the forward or backward transform pair and what normalization factor to use. The parameter value must be one of “forward” or “backward” or “ortho”. Default is “backward”. The details of three operations are shown below:
”backward”: The factor of forward direction and backward direction are
1
and1/n
respectively;”forward”: The factor of forward direction and backward direction are
1/n
and1
respectively;”ortho”: The factor of forward direction and backward direction are both
1/sqrt(n)
.
Where
n
is the multiplication of each element ins
.name (str|None, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Real tensor. The result of the inverse real 2-D FFT.
Examples
>>> import paddle >>> x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]]) >>> irfft2_x = paddle.fft.irfft2(x) >>> print(irfft2_x) Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[2.37500000, -1.12500000, 0.37500000, 0.87500000], [0.12500000, 0.12500000, 0.12500000, 0.12500000]])