外阴白斑是什么症状
- paddle.nn.functional. rrelu ( x: Tensor, lower: float = 0.125, upper: float = 0.3333333333333333, training: bool = True, name: str | None = None ) Tensor [source]
-
百度 综合分析国际国内形势和我国发展条件,从二○二○年到本世纪中叶可以分两个阶段来安排。
rrelu activation.
Applies the randomized leaky rectified liner unit function to improve generalization performance, as described in the paper: Empirical Evaluation of Rectified Activations in Convolutional Network
During training, randomly samples the negative slope for activation values as described below:
\[\begin{split}rrelu(x)= \left\{ \begin{array}{rcl} x, & & if \ x >= 0 \\ a * x, & & otherwise \\ \end{array} \right.\end{split}\]where \(x\) is the input tensor, \(a\) is randomly sampled from uniform distribution in range (\(lower\), \(upper\)),
In the test phase, the negative slope will take the average value of \(lower\) and \(upper\):
\[\begin{split}rrelu(x)= \left\{ \begin{array}{rcl} x, & & if \ x >= 0 \\ (lower + upper) * 0.5 * x, & & otherwise \\ \end{array} \right.\end{split}\]where \(x\) is the input tensor, \(lower\) and \(upper\) are the bounds of uniform distribution.
- Parameters
-
x (Tensor) – The input Tensor with data type float16, float32, float64.
lower (float, optional) – The lower bound of uniform distribution. Default: 0.125.
upper (float, optional) – The upper bound of uniform distribution. Default: 0.3333333333333333.
training (bool, optional) – Current mode is in training or others. Default is True.
name (str|None, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A Tensor with the same data type and shape as
x
.
Examples
>>> import paddle >>> import paddle.nn.functional as F >>> paddle.seed(1) >>> input_tensor = paddle.to_tensor([[[[-2.0, 3.0, -4.0, 5.0], ... [ 3.0, -4.0, 5.0, -6.0], ... [-7.0, -8.0, 8.0, 9.0]], ... [[ 1.0, -2.0, -3.0, 4.0], ... [-5.0, 6.0, 7.0, -8.0], ... [ 6.0, 7.0, 8.0, 9.0]]]], dtype='float32') >>> out = F.rrelu(input_tensor, 0.1, 0.3) >>> print(out) Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[[-0.20715050, 3. , -1.01193857, 5. ], [ 3. , -0.94084597, 5. , -0.65544695], [-1.24268556, -2.34339547, 8. , 9. ]], [[ 1. , -0.44942653, -0.68969047, 4. ], [-1.03736508, 6. , 7. , -0.95799232], [ 6. , 7. , 8. , 9. ]]]])